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Fair allocation of indivisible goods is a problem with significant real-world applications and numerous

variations. In this paper, we focus on an offline, multi-round setting where goods arrive in predetermined

batches, and agents discount future valuations of items while "forgetting about the past." This model captures

the essence of certain allocation problems, such as resource allocation in food banks, vaccine distribution,

and position assignments in organizations. Our main results include: (1) demonstrating that under general

settings, it is impossible to guarantee envy-free up to one good (EF1) fairness without adjustments; (2)

constructing an algorithm that ensures EF1 for two agents; (3) bounding the number of adjustments needed

in the general case; and (4) constructing a fair algorithm for the case of binary valuations. These findings

advance the understanding of fair allocation in multi-round settings with future discounting and have potential

applications in various real-world domains.

1 Introduction
The fair allocation of a set of indivisible goods is a problem with many variations and real-world

applications. In its simplest form, the task is to divide a set of discrete goods that cannot be divided

further or separated as fairly as possible to a set of agents, each of whom may value any individual

good differently. One notion of "fair" allocation is ensuring that after allocation no agent would

prefer to have another agent’s bundle of goods. In many cases an "envy-free" allocation (where no

agent envies another) is impossible, and so algorithms seek to make allocations that are envy-free

up to a certain number of goods, or to minimize the amount that an agent envies another’s bundle.

Variations on the problem include changing the number of players, having varying numbers of

goods arrive at the same time in batches, and allowing for adjustments to previously allocated

goods. Our paper proposes a new model, one that assumes goods arrive in a known number of

predetermined batches while allowing agents to discount the past, and focuses on when the model

can guarantee that an allocation that is envy-free up to one good at the end of each round.

The indivisible goods problem has a multitude of real-world analogs. Food banks play a version

of this game, when they allocate food to hungry families, who all may value a can of beans or

a loaf of bread differently. The food bank setting is an "uninformed" (sometimes referred to as

"online" in the literature) setting, where the number of batches and number of goods in each batch

is not known. Compare this setting to rural hospitals receiving COVID-19 vaccines in early 2021,

when governments could possibly guarantee the number of vaccines of each type in a guaranteed

number of batches to come, but may still want to guarantee some level of fairness at each round of

allocation. Different hospitals may have had different valuations for the different types of COVID-19

vaccine, creating an "informed" (or "offline," in some of the literature) allocation problem, where

the information about future goods and batches is known at the allocation of each individual batch.

The goods in each of these two settings were both exhaustible - once the food was handed out or

the vaccines used, they obviously could not be given from one agent to another upon the arrival of

a later batch in order to bandage envy caused by that batch. Goods that are inexhaustible, though,

can be adjusted later, creating yet another flavor of the allocation problem (He et al. [4]). In this

setting, one might think of positions or benefits in a university that are allocated to professors, or

in a business that are allocated to partners. A corner office does not simply go away in the same
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manner that a COVID-19 vaccine does once someone uses it for a year; it can be reallocated at a

later date to make an overall allocation more fair once a new batch of "goods" comes in.

Our model focuses on the offline setting. In this model, agents discount future valuations of

items, which means they assign less importance to items that will be allocated in future rounds,

consequently affecting their preferences and priorities during the allocation process. Furthermore,

agents "forget about the past," signifying that they disregard previous allocations in their valuations.

Our research aims to identify the limitations of fair mechanisms in these multi-round settings and

develop a new algorithm that can guarantee EF1 fairness under various assumptions.

The structure of the paper is organized as follows: (a) Preliminaries, where we introduce the

necessary definitions, notation, and concepts used throughout the paper; (b) Impossibility Result,

where we prove that no algorithm can guarantee EF1 in multi-round settings with more than

two agents; (c) Two-Agent Case, where we focus on the two-agent case, including the Backwards

Induction Envy Balancing Algorithm that ensures fair solution; (d) Adjustments, where we explore

the upper bound of the number of adjustments needed to achieve fairness; and (e) Binary Valuations,

where we delve into the specific case of binary valuations.

1.1 Related Work
In our study of online fair division with repeated rounds and a discount factor, we aim to achieve

envy-free up to one item (EF1) allocations. It is crucial to differentiate ourmodel from prior literature,

as variations in the studied models substantially impact the allocation mechanisms developed. In

this section, we discuss the prior literature that has been studied in these contexts. A thorough

comprehension of these differences allows us to identify unique algorithms and mechanisms for our

specific setting. Building upon the insights from previous works, our research introduces a novel

approach to online fair division by incorporating both future-looking repeated round allocation

and discount factors. This distinctive perspective enables the development of tailored mechanisms

and algorithms, further advancing the field of online fair division and promoting the creation of

fair allocation mechanisms in diverse contexts.

Our work builds upon a foundation laid by He et al. [4], who investigate a model in which 𝑇

indivisible items arrive sequentially, one at a time. In their study, they focus on guaranteeing EF1 at

each round, considering an "accumulated" notion of fairness, where agents are not future-looking

and accumulate utility from previous rounds. In contrast, our model explores a future-looking

perspective with agents discounting future valuations and "forgetting about the past" in their

decision-making process. Additionally, our model incorporates the arrival of batches of items.

While the connection may not be immediately apparent or straightforward, in some cases our

model can be reduced to the results presented by He et al. [4]. Consequently, some of the findings

discussed in this paper can be regarded as extensions or adaptations of their work. For two players

in the offline setting, their present an algorithm that guarantees EF1 with no adjustments. They

also provide an algorithm for the online setting that uses 𝑂 (𝑇 3/2) adjustments. In our work, we

note that the impossibility result for 𝑛 ≥ 3 players still holds in our setting, and adapt both the

two-player offline algorithm and the three-player online algorithm from He et al. [4] to our context.

Our work also relates to other recent work in the space of online fair division. Benade et al. [3]

study the problem of minimizing the maximum envy when there are 𝑇 items arriving in an online

fashion and must be allocated upon arrival. This paper shows that there exists a polynomial-time,

deterministic algorithm where the ratio of envy over time goes to zero as 𝑇 goes to infinity. While

our problem is not inherently online, it does involve items arriving over time and losing value after

they arrive.
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Our work also builds on the survey work of Aleksandrov and Walsh [1]. "Online Fair Division:

A Survey" is a comprehensive review of recent research on fair division algorithms for online

settings. The paper provides an overview of the challenges involved in allocating resources fairly

in online environments and reviews various approaches that have been proposed to address them.

The authors discuss the theoretical foundations of fair division, including concepts such as envy-

freeness, proportionality, and equitability, and examine how these concepts can be applied in

online settings. They also review a range of algorithms that have been proposed for online fair

division, including probabilistic and combinatorial methods, as well as adaptive and dynamic

algorithms. The paper discusses and shows different properties of different online mechanisms.

For example, they highlight that an informed algorithm requires no re-allocations to ensure EF1

while an uninformed algorithm requires Θ(𝑚) re-allocations to guarantee EF1. They also discuss

both asymptotic guarantees and intractability results that have been proven in these settings

(Aleksandrov and Walsh [1]). In our work, we discuss the informed case and particularly make

contributions to the EF1 scenario without adjustments in the general setting. We also make new

extensions to the binary valuations case and show that the algorithm with binary valuations is EF1

at every round. To the best of our knowledge, this specific setting not been studied in this literature

to date.

2 Preliminaries
Consider a set of 𝑛 agents 𝐴 = {𝑎1, . . . , 𝑎𝑛} and a set 𝑂 containing all available items (sometimes

referred to interchangeably as "goods"). We define a sequence of𝑇 batches of goods, with the goods

in each batch denoted by 𝐺1, . . . ,𝐺𝑇
. At each round 𝑡 , the batch is of size 𝑡𝑚 and individual goods

are numbered such that 𝐺𝑡 = {𝑔𝑡
1
, . . . , 𝑔𝑡𝑡𝑚 }. At the end of the final round, all goods in 𝑂 have been

allocated: 𝑂 =
⋃𝑇

𝑡=1𝐺
𝑡
. Each agent 𝑎𝑖 possesses a valuation function 𝑣𝑖 that represents the value

assigned to a subset of items 𝑆 ⊂ 𝑂 . For simplicity, we use 𝑣𝑖 (𝑔 𝑗 ) to denote 𝑣𝑖 ({𝑔 𝑗 }). We assume

that 𝑣𝑖 (𝑆) ≥ 0 for every subset of items 𝑆 . A valuation function 𝑣𝑖 is additive if 𝑣𝑖 (𝑆) =
∑

𝑔∈𝑆 𝑣𝑖 (𝑔).
An allocation of goods at round 𝑡 is represented by a partition 𝐴𝑡 = (𝐴𝑡

1
, . . . , 𝐴𝑡

𝑛), where 𝐴𝑡
𝑖 ⊂ 𝐺𝑖

is

the bundle of goods allocated to agent 𝑖 .

Intuitively, agents possess knowledge of the future but discount future valuations, favoring imme-

diate allocation of items. Moreover, agents "forget about the past" in the sense that in round 𝑡 , all

items allocated in round 𝑡 ′ < 𝑡 do not contribute to the agents’ utility. We formalize this concept by

introducing a discount factor 𝛿 ∈ (0, 1]. The utility of agent 𝑖 at round 𝑡 is the discounted valuations

of all the items they will receive, given by:

𝑈𝑖 (𝐴𝑡
𝑖 , ..., 𝐴

𝑇
𝑖 ) :=

𝑇∑︁
𝑡 ′=𝑡

𝛿𝑡
′−𝑡𝑣𝑖 (𝐴𝑡 ′

𝑖 )

Our focus is on fair allocations that exhibit envy-free up to one item (EF1) characteristics. Informally,

an EF1 allocation is one where, for every instance of one player envying another, the envy could

be resolved by removing only one good from the envied player’s set. In our setting, we define an

allocation 𝐴 = (𝐴1, . . . , 𝐴𝑇 ) to be envy-free up to one item at round 𝑡 if for any pair of agents 𝑖 and 𝑗 ,

there exists 𝑘 ≥ 𝑡 and an item 𝑔 ∈ 𝐺𝑘
such that:

𝑈𝑖 (𝐴𝑡
𝑖 , . . . , 𝐴

𝑇
𝑖 ) ≥ 𝑈𝑖 (𝐴𝑡

𝑗 , . . . 𝐴
𝑘
𝑗 \ {𝑔} . . . 𝐴𝑇

𝑗 )

That is, agent 𝑖 does not envy player 𝑗 if we remove item 𝑔 from player 𝑗 ’s allocation. We say that

an allocation 𝐴 is EF1 if it is EF1 at every round 𝑡 ∈ [𝑇 ].
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The Round Robin mechanism is an allocation method in which goods are allocated to agents in a

cyclical and pre-determined order, with each agent selecting their most preferred item from the

available pool in their turn. This method ensures an EF1 allocation in a single-round settings.

3 The Impossibility Result
We begin our discussion by demonstrating that nomechanism inmulti-round settings can guarantee

EF1 when more than two agents are involved. This impossibility result underscores the inherent

challenges in devising an algorithm that ensures fairness at every round with time discounts

especially in real world settings where the number of rounds may be high. Formally, we present

the following theorem:

Theorem 1. For any 𝑛 > 2, assume that items arrive in at least 16 distinct batches (𝑇 ≥ 16). There
exist valuations (𝑣𝑖 )𝑖∈[𝑛] and a time discount factor 𝛿 ∈ (0, 1) such that, for any allocation algorithm,
the resulting allocation fails to achieve EF1 at every round.

The result presented here is primarily an extension of Theorem 4.2 from He et al. [4], with the key

differences being that agents in our setting consider future items and "forget" the past, as well as

the introduction of batches. The observation most relevant to us is that their result can be extended

by "reversing the order" of the items and allowing for batches of more than one item. Adapting their

result to our setting requires only minor adjustments, which we have included in full in Appendix

A. In doing so, we not only demonstrate the broader applicability of their findings, but also set the

stage for the rest of our results and highlight the challenges in designing fair allocation mechanisms

for more complex situations involving multiple agents.

4 Two Agents
Given the impossibility result discussed in the previous section, we now turn our attention to the

simpler two-player case. In this section, we introduce the Backwards Induction Envy Balancing

algorithm (Algorithm 1), which ensures envy-freeness up to one item within our extended frame-

work. Our primary objective is to provide a comprehensive explanation of the algorithm and prove

its EF1 guarantee.

The Backwards Induction Envy Balancing algorithm (Algorithm 1) builds upon the "Envy Balancing"

algorithm presented by He et al. [4]. Our extended algorithm adapts the envy balancing concept

to suit our problem setting. (Algorithm 1) aims to iteratively build an allocation for two agents

in an online setting, ensuring that all suffixes of the allocation are EF1 allocations. Each player 𝑖

has two baskets: permanent basket 𝑃𝑖 and a temporary basket 𝐷𝑖 . The algorithm initializes both of

them to the empty set for each agent and iterates through each round in reverse order, from the

last round 𝑇 to the first round. At each step, the algorithm first checks if agent 𝑎1 is unenvied with

respect to the temporary baskets 𝐷 . If so, it updates the temporary allocation 𝐷 by applying the

Round Robin algorithm to the goods𝐺𝑡
, starting with agent 𝑎1 (we denote by RoundRobin(𝐺 , 𝑎) the

allocation made by the Round Robin mechanism with respect to items𝐺 and agent 𝑎 choosing first).

Otherwise, if 𝑎1 is not unenvied, the algorithm updates the temporary allocation 𝐷 by applying the

RoundRobin algorithm to the goods 𝐺𝑡
, starting with agent 𝑎2.

After updating the temporary allocations, there are three cases to consider with respect to the

temporary baskets. First, if both agents envy each other with respect to the temporary baskets

𝐷 = (𝐷1, 𝐷2) the algorithm swaps the temporary baskets of both agents, creating an envy-free

allocation with respect to the items in 𝐷 . Second, if the current allocation is envy-free with respect

to𝐷 , the algorithm moves the items from each agent’s temporary basket to their permanent baskets,
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effectively transferring the envy-free allocation to the permanent baskets. This second step will

also happen after the temporary baskets are swapped, as that allocation is now envy-free. Finally,

if exactly one agent envies, we move to the next step. Intuitively, these steps ensure that if we

swap items at round 𝑡 to guarantee fairness, we do not affect the envy-free allocation at rounds

𝑡 ′ > 𝑡 . If 𝑔𝑡
′ ∈ 𝐺𝑡 ′

remains in a player’s temporary baskets, it must be the case that the (temporary)

allocation was not envy-free at rounds 𝑡 to 𝑡 ′, and a swap at round 𝑡 would only change which

agent was envious. If the allocation was envy-free, we "fix" the allocation by moving it to the

permanent basket.

Finally, after iterating through all rounds, the algorithm constructs the final allocation 𝐴𝑡
for each

round 𝑡 using the contents of the permanent and temporary baskets. The algorithm returns a

sequence of allocations for all rounds (𝐴1, 𝐴2, . . . , 𝐴𝑇 ).

Algorithm 1 Backwards Induction Envy Balancing

Require: 𝑣1, 𝑣2, 𝛿
1: 𝑃 ← (∅, ∅), 𝐷 ← (∅, ∅) {Initialize permanent and temporary baskets}

2: for 𝑡 = 𝑇 to 1 do
3: if 𝑎1 is unenvied in 𝐷 then
4: 𝐷 ← 𝐷 ∪ RoundRobin(𝐺𝑡

, 𝑎1)

5: else
6: 𝐷 ← 𝐷 ∪ RoundRobin(𝐺𝑡

, 𝑎2)

7: end if
8: if both 𝑎1 and 𝑎2 envy each other in 𝐷 then
9: 𝐷 ← (𝐷2, 𝐷1) {Resolve envy by swapping temporary baskets}

10: end if
11: if 𝐷 is envy-free then
12: 𝑃 ← 𝑃 ∪ 𝐷 for both agents 𝑖 {temporary to permanent}

13: 𝐷 ← (∅, ∅) for both agents 𝑖

14: end if
15: end for
16: Construct the final allocation 𝐴𝑡

by (𝑃 ∪ 𝐷) ∩𝐺𝑡
for each round 𝑡

17: return (𝐴1, 𝐴2, . . . , 𝐴𝑇 )

Theorem 2. Algorithm 1 is EF1 at every round.

The complete proof can be found in Appendix B.

5 Adjustments
Theorem (1) establishes that no algorithm can guarantee EF1 in every round for more than 2

players. Consequently, in this section, we focus on determining the number of adjustments needed

to achieve this guarantee. We provide an upper bound for the number of adjustments required

when a total of 𝑇 items arrive in 𝑘 batches, for 𝑛 ≥ 3 players, by adapting the Double Round Robin

algorithm proposed in He et al. [4]. Note that in contrast to notation introduced in the preliminaries,

in this section 𝑇 represents the total number of items instead of the number of rounds. We make

this notation change to highlight the way in which changing the number of rounds affects the

bound on the number of adjustments needed.
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Algorithm 2 Double Round Robin

Require: 𝑣𝑖 for each agent 𝑎𝑖
1: 𝑀 ← ∅, 𝑆 ← ∅
2: for 𝑡 = 𝑇 /𝑘 to 1 do
3: 𝑆 ← 𝑆 ∪ {𝐺𝑡 }
4: if |𝑆 | ≥

√
𝑘 ·
√
𝑇 then

5: 𝑀 ← 𝑀 ∪ 𝑆
6: 𝑆 ← ∅
7: end if
8: 𝐴𝑀 ← RoundRobin(𝑀,𝑎1 > ... > 𝑎𝑛)
9: 𝐴𝑆 ← RoundRobin(𝑆, 𝑎𝑛 > ... > 𝑎1)
10: Let 𝐴𝑡

be the combination of allocations 𝐴𝑆 and 𝐴𝑀

11: end for
12: return (𝐴1, 𝐴2, . . . , 𝐴𝑇 )

At a high level, the algorithm works in the following way. In each round, all the items to be allocated

are added to the side pile. Whenever the number of items in the side pile exceeds

√
𝑘 ·
√
𝑇 , we move

the items from the side pile to the main pile (clearing the side pile). After resolving the current

state of the piles, the players take turns selecting from the main pile in round robin order, and take

turns selecting from the side pile in reverse round robin order. The allocation at the end of each

round is the combination of both round robin allocations.

Theorem 3. Algorithm 2 is an EF1 algorithm that requires 𝑂 (𝑇 3/2/
√
𝑘) adjustments.

Proof. We first prove that the allocation is EF1 for each round. This part of the proof is identical

to that in section 4 of He et al. [4], but we summarize it here for completeness. Observe that when

items are allocated in a round robin fashion, for any pair of agents 𝑎𝑖 and 𝑎 𝑗 , 𝑎𝑖 will envy 𝑎 𝑗 by at

most one item. Furthermore, if 𝑎𝑖 was earlier in the round robin order than 𝑎 𝑗 , then 𝑎𝑖 does not

envy 𝑎 𝑗 at all, as we could map each item in 𝑎 𝑗 ’s bundle to an item in 𝑎𝑖 ’s bundle that 𝑎𝑖 has a

higher value for.

We observe that the main pile and side pile are allocated using reverse order, which implies that

𝑎𝑖 only envies 𝑎 𝑗 in the main pile allocation if 𝑎𝑖 does not envy 𝑎 𝑗 in the side allocation, and vice

versa. When 𝑎𝑖 envies 𝑎 𝑗 , we know that 𝑎𝑖 only envies 𝑎 𝑗 by one item, so 𝑎𝑖 must only envy 𝑎 𝑗 by

one item total after combining allocations.

We now prove that the algorithm uses at most𝑂 (𝑇 3/2/
√
𝑘) adjustments. The main pile only changes

every

√
𝑘 ·
√
𝑇 rounds. Therefore, we can observe that:

Total adjustments in main pile ≤
√
𝑇𝑘 + 2

√
𝑇𝑘 + ... +𝑇

=

(
1 + 2 + ... +

√
𝑇
√
𝑘

)
√
𝑇𝑘

=
1

2

·
√
𝑇
√
𝑘

(√
𝑇
√
𝑘
+ 1

)
·
√
𝑇𝑘

= 𝑂 (𝑇 3/2/
√
𝑘)
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On the other hand, the side pile might be reallocated every round, but, crucially, there are only𝑇 /𝑘
rounds and at most

√
𝑇𝑘 items in the side pile in any given round. Therefore:

Total adjustments in side pile ≤
√
𝑇𝑘 · 𝑇

𝑘
= 𝑂 (𝑇 3/2/

√
𝑘)

This implies that the total number of adjustments is also 𝑂 (𝑇 3/2/
√
𝑘). □

Here, we provide a brief discussion on how the result for our setting compares to the result in

[4]. Most notably, our algorithm uses 𝑂 (𝑇 3/2/
√
𝑘) adjustments instead of 𝑂 (𝑇 3/2) adjustments

because we wait until there are more items in the side pile before moving the items in the side

pile to the main pile. Specifically, we move the side pile to the main pile whenever the side pile

accumulates at least

√
𝑘 ·
√
𝑇 items instead of

√
𝑇 items. We are able to wait for more items to

accumulate because there are fewer rounds total, which significantly impacts the number of times

the side pile is reallocated. We further observe that because we are allowing readjustments of each

pile whenever the pile is changed, the addition of 𝛿 does not change our algorithm. Finally, like in

[4], our algorithm works whether or not we have knowledge of the future.

6 Binary Valuations
In this section, we focus on the binary valuation case where agents assign a value of either 0 or 1

to each item. In other words, they either value an item (1) or not at all (0). The binary valuation

scenario is particularly interesting as it contrasts with the general settings (Theorem 1) where no

algorithm can guarantee EF1 at every round.

We investigate an extended version of the BALANCED LIKE algorithm (Aleksandrov et al. [2]),

which aims to balance the number of items allocated to agents. In every batch, it assigns the

subsequent item exclusively to those agents who value it, resolving any tie by allocating the item

to the agent with the lowest cumulative utility. The BALANCED LIKE algorithm is proven to be

EF1 for the binary valuations case. Although the core of the algorithm remains the same as in

(Aleksandrov et al. [2]), the proof generalizes their argument to adapt to our extended settings.

Algorithm 3 Extended Balanced Like

Require: (𝑣𝑖 )𝑖∈[𝑛], 𝛿
1: 𝐷 ← ∅
2: 𝐴𝑡 = (∅, . . . , ∅) for every round 𝑡 ∈ [𝑇 ]
3: for 𝑡 = 𝑇 to 1 do
4: for 𝑖 = 1 to |𝐺𝑡 | do
5: 𝐷 ← {𝑎 𝑗 | 𝑣 𝑗 (𝑔𝑖 ) = 1}
6: Let 𝑗 ∈ [𝑛] with 𝑎 𝑗 = argmin{𝑈 𝑗 (𝐴𝑡+1

𝑗 , ..., 𝐴𝑇
𝑗 ) | 𝑎 𝑗 ∈ 𝐷}

7: 𝐴𝑡
𝑗 ← 𝐴𝑡

𝑗 ∪ {𝑔𝑖 }
8: end for
9: end for
10: return (𝐴1, 𝐴2, . . . , 𝐴𝑇 )

Theorem 4. Algorithm (3) with binary valuations is EF1 at every round.

The main step of the proof shows that if, for example, agent 𝑎1 gets the item 𝑔𝑡 , then any other

player 𝑘 that also values 𝑔𝑡 does not envy player 𝑎1 with respect to the allocation of the items from
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round 𝑡 + 1 to𝑇 . The proof demonstrates that the valuations of all agents from their own allocations

remain approximately balanced throughout all steps, as the name of the algorithm implies.

Proof. To prove this result, it suffices to consider the case where |𝐺𝑡 | = 1, i.e., batches of one item.

We denote by 𝑔𝑡 the item we are allocating at time 𝑡 . Let 𝑡 ∈ [𝑇 ], we will prove that the allocation
(𝐴𝑡 , . . . , 𝐴𝑇 ) is EF1. We use backward induction to establish this proof.

For 𝑡 = 𝑇 , only one item is being allocated, and the allocation is clearly EF1. Now let 𝑡 < 𝑇 . Suppose,

without loss of generality, that agent 𝑎1 was selected to receive the item (line 6). Let 𝑘 ≠ 1. We will

prove that agent 𝑎𝑘 does not envy agent 𝑎1 by more than one item.

We consider two cases. If 𝑎𝑘 ∉ 𝐷 (as defined in line 5), then 𝑣𝑘 (𝑔𝑡 ) = 0 and the result follows from

the induction hypothesis.

Otherwise, 𝑣𝑘 (𝑔𝑡 ) = 1. By the selection rule (line 6), agent 1’s valuation of their own allocation

from round 𝑡 + 1 is not as large as agent 𝑘’s valuation of their own allocation:

𝑈1 (𝐴𝑡+1
1

, . . . 𝐴𝑇
1
) ≤ 𝑈𝑘 (𝐴𝑡+1

𝑘
. . . 𝐴𝑇

𝑘
) (1)

Furthermore, we argue that:

𝑈𝑘 (𝐴𝑡+1
1

, . . . 𝐴𝑇
1
) ≤ 𝑈1 (𝐴𝑡+1

1
, . . . 𝐴𝑇

1
) (2)

This is because 𝐴𝑖
1
≠ ∅ only if 𝑣1 (𝑔𝑖 ) = 1. In this sense, 𝑈1 is the utility function that attains the

maximum utility from the allocation (𝐴𝑡+1
1

, . . . 𝐴𝑇
1
). Formally, if the non-empty allocations among

(𝐴𝑡+1
1

, . . . 𝐴𝑇
1
) are 𝐴𝑡1

1
, . . . 𝐴

𝑡𝑚
1

then:

𝑈1 (𝐴𝑡+1
1

, . . . 𝐴𝑇
1
) =

𝑚∑︁
𝑖=1

𝛿𝑡𝑖−𝑡 =
𝑚∑︁
𝑖=1

𝛿𝑡𝑖−𝑡𝑣1 (𝑔𝑡𝑖 ) ≥
𝑚∑︁
𝑖=1

𝛿𝑡𝑖−𝑡𝑣𝑘 (𝑔𝑡𝑖 ) = 𝑈𝑘 (𝐴𝑡+1
1

, . . . 𝐴𝑇
1
)

Combining equations (1) and (2) we find that at the start of round 𝑡 , agent 𝑘 does not envy agent

1. Consequently, by the end of round 𝑡 , agent 𝑘 does not envy agent 1 by more than one item. □

7 Conclusion
In this paper, we set out to address the problem of fairly allocating indivisible goods in an offline,

multi-round setting where agents discount future valuations and forget about past allocations. In our

setting, goods arrive in predetermined batches, and the primary goal is to guarantee envy-freeness

up to one good (EF1) at the end of each round.

Our key findings include the impossibility of achieving EF1 without adjustments in general settings,

the development of an algorithm that ensures EF1 for two agents, a bound on the number of

adjustments needed in the general case, and the construction of a fair algorithm for the case of

binary valuations. These results provide important insights into the limitations and possibilities for

fair allocation in such settings.

The broader implications of our research extend to various real-world applications, such as resource

distribution and task allocation, where fairness is crucial. Our findings contribute to a deeper

understanding of the underlying dynamics and complexities of multi-round allocation problems.
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A Proof of Theorem 1
Lemma 5. Consider the case where 𝑛 = 3. If F is a mechanism that ensures EF1 at every round, then
for every sequence of goods (𝐺1, . . . ,𝐺𝑇 ), 𝛿 ∈ (0, 1] and valuation functions (𝑣1, 𝑣2, 𝑣3), F cannot
produce an allocation with an envy-cycle.

Proof. If an envy-cycle exists with respect to (𝐺1, . . . ,𝐺𝑇 ) and (𝑣1, 𝑣2, 𝑣3), we introduce a new
batch of items 𝐺0 = {𝑔} at the beginning such that 𝑣𝑖 (𝑔) > 0 for all agents. Then, if F generates

an envy-cycle from round 𝑡 = 1, 𝐺0
cannot be allocated without violating EF1. □

Next, we invoke the following statement by He et al. [4]:

Theorem 6 (He et al. [4] Theorem 4.2). For the case of 𝑛 = 3 and 𝛿 = 1, there exists a sequence of
16 batches (𝐺1, . . . ,𝐺16) and valuation functions (𝑣1, 𝑣2, 𝑣3) such that F generates an envy-cycle.

The original claim was presented for the case of accumulated utility without future-looking. The

proof can be adjusted for our settings by reversing the order of items. The number of batches

needed can be reduced from 22 in the original paper to 16 by combining items 1 − 3, 8 − 10, and
17− 19 into three three-item batches. The proof can then be generalized to any batch size by adding

dummy items of negligible valuation and to every number of agents by adding dummy agents.

Finally, for a general discount factor 𝛿 , one can adjust the valuations of the the items in 𝐺𝑡
by

multiplying by 𝛿−𝑡 .

B Proof of Theorem 2
proof Theorem 2. Let 𝑡 ∈ [𝑇 ]. Then our goal is to show that the allocation (𝐴𝑡 , . . . , 𝐴𝑇 ) is EF1.
Denote the temporary and permanent baskets at the end of round 𝑡 as 𝐷𝑡

and 𝑃𝑡 , respectively, and

the "candidate" allocation at round 𝑡 ≤ 𝑇 as 𝐶𝑡
:= 𝐷𝑡 ∪ 𝑃𝑡 . There exists a round 𝑡 < 𝑠 ≤ 𝑇 + 1 for

which the candidate allocation𝐶𝑠
is envy-free (we consider round𝑇 + 1 to be the empty allocation).

By definition, the final allocation at round 𝑡 , 𝐴𝑡
, is equal to (𝑃𝑡

1
∪ 𝐷𝑡

1
, 𝑃𝑡

2
∪ 𝐷𝑡

2
) if no swap occurred

in rounds 1 to 𝑡 − 1, or (𝑃𝑡
1
∪𝐷𝑡

2
, 𝑃𝑡

2
∪𝐷𝑡

1
) otherwise. Due to the choice of 𝑠 , 𝑃𝑡 = 𝑃𝑠 . Let𝑀1 and𝑀2

denote the value of the most valuable items for player 2 and player 1, respectively, between rounds

𝑡 to 𝑠:

𝑀1 := max{𝑣1 (𝑔) | 𝑔 ∈ ∪𝑠−1𝑡 ′=𝑡𝐴
𝑡 ′
2
} 𝑀2 := max{𝑣2 (𝑔) | 𝑔 ∈ ∪𝑠−1𝑡 ′=𝑡𝐴

𝑡 ′
1
} (3)

Notice that:

𝑈1 (𝐴𝑡
1
, . . . 𝐴𝑇

1
) =

𝑇∑︁
𝑡 ′=𝑡

∑︁
𝑔∈𝐴𝑡 ′

1

𝛿𝑡
′−𝑡𝑣1 (𝑔) =

𝑠−1∑︁
𝑡 ′=𝑡

∑︁
𝑔∈𝐴𝑡 ′

1

𝛿𝑡
′−𝑡𝑣1 (𝑔) + 𝛿𝑠−𝑡

𝑇∑︁
𝑡 ′=𝑠

∑︁
𝑔∈𝐴𝑡 ′

1

𝛿𝑡
′−𝑠𝑣1 (𝑔)

= 𝑈1 (𝐴𝑡
1
, .., 𝐴𝑠−1

1
) + 𝛿𝑠−𝑡𝑈1 (𝐴𝑠

1
, .., 𝐴𝑇

1
) ≥ 𝑈1 (𝐴𝑡

1
, .., 𝐴𝑠−1

1
) + 𝛿𝑠−𝑡𝑈1 (𝐴𝑠

2
, .., 𝐴𝑇

2
)

and similarly for the second player. It is therefore suffices, by the definition of EF1, to show that:

𝑈1 (𝐴𝑡
2
. . . 𝐴𝑠−1

2
) −𝑈1 (𝐴𝑡

1
, . . . 𝐴𝑠−1

1
) ≤ 𝑀1 (4)

𝑈2 (𝐴𝑡
1
. . . 𝐴𝑠−1

1
) −𝑈2 (𝐴𝑡

2
, . . . 𝐴𝑠−1

2
) ≤ 𝑀2 (5)

because combining the above two equations with equation 3, results in

𝑈1 (𝐴𝑡
1
, . . . 𝐴𝑇

1
) ≥ 𝑈1 (𝐴𝑡

2
, . . . 𝐴𝑇

2
) −𝑀1

(and similarly for the second player). Without loss of generality, it suffices to show (4), and the

result follows by symmetry.
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Although the final allocation at any time 𝑡 ′, 𝐴𝑡 ′
, is determined only at the end of the for loop (line

2), we can still argue that:

𝑠−1⋃
𝑡 ′=𝑡

𝐴𝑡 ′ ∈ {(𝐷𝑡 ′
1
, 𝐷𝑡 ′

2
), (𝐷𝑡 ′

2
, 𝐷𝑡 ′

1
)}

This is because no swap occurred between rounds 𝑡 to 𝑠 (otherwise, there would be a candidate

allocation that is envy-free before round 𝑠). Hence, it suffices to discard the permanent baskets and

prove that:

|𝑈1 (𝐷𝑡
2
. . . 𝐷𝑠−1

2
) −𝑈1 (𝐷𝑡

1
, . . . 𝐷𝑠−1

1
) | ≤ 𝑀1 (6)

We prove (6) by backward induction on 𝑡 . If 𝑡 = 𝑠 − 1, the Round Robin algorithm ensures EF1, and

in particular, equation (6). Now suppose 𝑡 < 𝑠 − 1. By the inductive hypothesis, we know that for

the same 𝑠 and some𝑀 ′
1
≤ 𝑀1, it holds that

|𝑈1 (𝐷𝑡+1
2

. . . 𝐷𝑠−1
2
) −𝑈1 (𝐷𝑡+1

1
, . . . 𝐷𝑠−1

1
) | ≤ 𝑀 ′

1

Consider the following two cases: if 𝑈1 (𝐷𝑡+1
2

. . . 𝐷𝑠−1
2
) −𝑈1 (𝐷𝑡+1

1
, . . . 𝐷𝑠−1

1
) > 0, 𝑎2 is envied and

line 3 is True, and 𝑎1 chooses first. The value of 𝑎1 for the most valuable item in 𝐺𝑡
is at most𝑀1

and so by additivity:

𝑈1 (𝐷𝑡
2
. . . 𝐷𝑠−1

2
) −𝑈1 (𝐷𝑡

1
, . . . 𝐷𝑠−1

1
) = (𝑈1 (𝐷𝑡

2
) −𝑈1 (𝐷𝑡

1
)) + 𝛿

(
𝑈1 (𝐷𝑡+1

2
. . . 𝐷𝑠−1

2
) −𝑈1 (𝐷𝑡+1

1
, . . . 𝐷𝑠−1

1
)
)

The right hand size is smaller than 0+𝛿𝑀 ′
1
≤ 𝑀1, and greater than −𝑀1 + 0. In either case, equation

(6) holds.

The other case is 𝑈1 (𝐷𝑡+1
2

. . . 𝐷𝑠−1
2
) − 𝑈1 (𝐷𝑡+1

1
, . . . 𝐷𝑠−1

1
) ≤ 0. In this case, 𝑎1 does not envy, and

𝑎2 chooses first. In this case, since the maximum envy that could occur at round 𝑡 is 𝑀1, clearly

equation (6) holds.

□
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