Achieving Fairness in Multi-Round Items Allocation

Gili, Itai, Jack, Shirley CS 238 Optimized Democracy

Recall Fair Division

Set of *G* indivisible goods, divided and given to a group of *n* players

Variations on Fair Division

Adjustments

Restrictions on goods

Real World Examples

https://www.npr.org/2020/11/20/937026003/pfizer-asks-fda-toapprove-its-covid-19-vaccine-for-emergency-use

https://www.lawtechnologytoday.org/2020/09/the-corner-office-a-rusty-artifact-of-the-past/

Previous Research

- Bounding the number of adjustments needed to achieve free at every round (He et al., 2019)
- Bounding the maximum envy between two agents at the end of each round, and decreasing it over time (Benade et al., 2018)
- Analyzing strategy-proofness and envyfreeness in a food bank setting (Alexandrov et al. 2015)

Focuses on a multi-round and informed setting (goods come in batches), and allows agents to discount the future with the goal of achieving low envy at the end of every round.

2 — Preliminaries

SP -

Definitions

- \bullet Let $\{a_1, a_2, ..., a_n\}$ be a set of n agents
- Let {G¹, ..., Gt} be a sequence of T batches of goods such that for every round t, Gt = {g¹t, ..., gtmt}
- Let $A = (A_1, ..., A_n)$ be an allocation of goods, where A_i is the bundle of goods allocated to agent i.
- EF1: envy-free up to one item

Definitions

- Informed setting: Assume items arrive in order over T rounds
- An algorithm is EF1 if it is EF1 for every round
- Agents have knowledge of the future, but they discount the future and prefer items now
- Let $\delta \in (0,1)$ be the discount factor
- The utility is the sum of $U_i(A_i^t) = \sum_{t'=t}^T \delta^{t'-t} v_i(A_i^{t'} \cap G^{t'})$ ns of all items they receive:

Example

- Suppose we have a food bank that receives:
 - 5 apples and 3 oranges at T=1
 - 3 apples and 4 oranges at T=2
 - 7 apples and 2 oranges at T=3
- Suppose two individuals have the following valuations:
 - Apples at 0.2 and oranges at 0.4
 - Apples at 0.6 and oranges at 0.3
- Can we find an algorithm that guarantees

• Suppose $\delta = 0.5$

	Agent 1	Agent 2
Round 1 3 apples, 2 oranges	3 (0.2) + 2(0.4)	3(0.6) + 2(0.3)
Round 2 4 apples, 1 orange	0.5[4 (0.2) + 1(0.4)]	0.5[4 (0.6) + 1(0.3)]
Round 3 1 apple, 2 oranges	0.5 ² [1 (0.2) + 2(0.4)]	$0.5^{2}[1(0.6) + 2(0.3)]$
	2.25	4.05

No Adjustments

The Impossibility Result & Backwards Induction Envy Balancing

The Impossibility Result

Theorem No algorithm can guarantee EF1 in multi-round settings with more than two agents

- Two-Player Setting: Qualitatively Different
- Backwards Induction Envy Balancing Algorithm
 - Ensures envy-freeness up to one item (EF1)
- Iteratively in reverse order builds EF1 allocations for two agents (extending He et al. (2019))

- Reverse order
- Apply RoundRobin to goods based on envy
- Construct final allocation for each round

- Apply RoundRobin to goods based on envy
 - EF? Move items to permanent
 - Both envy? substitute the baskets
 - One player envied? continue

- Apply RoundRobin to goods based on envy
 - EF? Move items to permanent
 - Both envy? substitute the baskets
 - One player envied? continue

- Apply RoundRobin to goods based on envy
 - EF? Move items to permanent
 - Both envy? substitute the baskets
 - One player envied? continue

permanent

- Apply RoundRobin to goods based on envy
 - EF? Move items to permanent
 - Both envy? substitute the baskets
 - One player envied? continue

- Apply RoundRobin to goods based on envy
 - EF? Move items to permanent
 - Both envy? substitute the baskets
 - One player envied? continue

permanent

- Apply RoundRobin to goods based on envy
 - EF? Move items to permanent
 - Both envy? substitute the baskets
 - One player envied? continue

permanent

Alice

- Apply RoundRobin to goods based on envy
 - EF? Move items to permanent
 - Both envy? substitute the baskets
 - One player envied? continue

- Apply RoundRobin to goods based on envy
 - EF? Move items to permanent
 - Both envy? substitute the baskets
 - One player envied? continue

- Apply RoundRobin to goods based on envy
 - EF? Move items to permanent
 - Both envy? substitute the baskets
 - One player envied? continue

permanent

- Apply RoundRobin to goods based on envy
 - EF? Move items to permanent
 - Both envy? substitute the baskets
 - One player envied? continue

permanent

4 — Adjustments

Introducing: Double Round Robin

Setting

- Impossible to achieve EF1 with n>2 players
- New tactic: allow adjustments to allocations
- Let T = # items, k = # rounds

Theorem: There exists an algorithm that achieves EF1 in every round, using O(T^{3/2}/√k) adjustments

Name: 'Double Round Robin'

- Name: 'Double Round Robin'
- Personality traits
 - Balanced: Has a main pile and a side
 - pile

- Name: 'Double Round Robin'
- Personality traits

Balanced: Has a main pile and a side

pile

Flexible: Allows a complete reallocation of every pile in every round

- Name: 'Double Round Robin'
- Personality traits
 - Balanced: Has a main pile and a side
 - pile
 - Flexible: Allows a complete reallocation
 - of every pile in every round
 - Growth-mindset: Always adds side pile to main pile eventually

- Name: 'Double Round Robin'
- Personality traits
 - Balanced: Has a main pile and a side
 - pile pile
 - Flexible: Allows a complete reallocation
 - of every pile in every round
 - Growth-mindset: Always adds side pile to main pile eventually

Algorithm 2 Double Round Robin

```
Require: v_i for each agent a_i
```

- 1: $M \leftarrow \emptyset, S \leftarrow \emptyset$
- 2: **for** t = T/m to 1 **do**
- $S \leftarrow S \cup \{G_t\}$
- 4: **if** $|S| \ge \sqrt{k} \cdot \sqrt{T}$ **then**
- 5: $M \leftarrow M \cup S$
- 6: S ← Ø
- 7: end if
- 8: $A_M \leftarrow \text{RoundRobin}(M, a_1 > ... > a_n)$
- 9: $A_S \leftarrow \text{RoundRobin}(S, a_n > ... > a_1)$
- 10: Let A^t be the combination of allocations A_S and A_M
- 11: end for
- 12: **return** $[A^1; A^2; ...; A^T]$

- Can we do better with restricted classes of valuations?
 - E.g. binary valuations
- Are there interesting bounds on other metrics of [approximate] fairness?

-Thanks!

Any questions?

Gili, Itai, Jack, Shirley