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Abstract

Recent work in large language modeling (LLMs) has used fine-tuning to align
outputs with the preferences of a prototypical user. This work assumes that human
preferences are static and homogeneous across individuals, so that aligning to a
a single “generic” user will confer more general alignment. Here, we embrace
the heterogeneity of human preferences to consider a different challenge: how
might a machine help people with diverse views find agreement? We fine-tune a 70
billion parameter LLM to generate statements that maximize the expected approval
for a group of people with potentially diverse opinions. Human participants
provide written opinions on thousands of questions touching on moral and political
issues (e.g., “should we raise taxes on the rich?”), and rate the LLM’s generated
candidate consensus statements for agreement and quality. A reward model is then
trained to predict individual preferences, enabling it to quantify and rank consensus
statements in terms of their appeal to the overall group, defined according to
different aggregation (social welfare) functions. The model produces consensus
statements that are preferred by human users over those from prompted LLMs
(> 70%) and significantly outperforms a tight fine-tuned baseline that lacks the
final ranking step. Further, our best model’s consensus statements are preferred
over the best human-generated opinions (> 65%). We find that when we silently
constructed consensus statements from only a subset of group members, those
who were excluded were more likely to dissent, revealing the sensitivity of the
consensus to individual contributions. These results highlight the potential to use
LLMs to help groups of humans align their values with one another.
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1 Introduction

Modern large-scale transformer-based language models have revolutionized the capacity of AI
systems to perform complex natural language processing tasks including reading comprehension,
common sense reasoning, and fluent language generation [8, 27, 11, 17]. A key challenge in language
modelling is to ensure that the generated text is helpful, legitimate, and aligned with human values
[20, 34, 4, 14]. One popular approach is to recruit human participants to rate or compare candidate
model outputs, providing feedback to the model about its performance on tasks like summarisation,
instruction-following, and question answering [5, 26, 30, 37, 23, 15]. For large models, this approach
improves performance on datasets specifically designed to test alignment (e.g., the HHH dataset),
without decreasing their overall language competencies [4].

Though powerful and general, extant methods for fine-tuning language models from human prefer-
ences treat these preferences as if they were homogeneous and static. This assumption is reasonable
for a task such as article summarisation, where there is an objectively defined ground truth (i.e.,
facts in the article that the model must summarise). However, for a wide variety of social problems
that humans solve themselves using language (e.g., social coordination and group decision making),
we cannot assume that people all share the same values. A key case study in alignment of diverse
preferences is consensus formation. Consensus is commonly defined as the agreement of a large
fraction of a social group about a particular topic or course of action. It is both a prerequisite for
cooperation and a key pillar of the democratic process. Finding consensus for humans is not easy,
and technology often exacerbates political division rather than fostering reconciliation among those
with divergent opinions [3]. Large language models achieve surprising fluency and sensitivity to
homogeneous preferences, but their ability to help people find agreement has not yet been tested.

Here, we investigate the use of large language models (LLMs) to aid humans in collectively producing
written opinions that maximize approval rates among users. Specifically, we create a corpus of
thousands of questions concerning political issues relevant in the United Kingdom, about which
reasonable, well-informed people might legitimately disagree (for example, “Should we tax unhealthy
foods and sugary drinks?”, or “Should we re-nationalise the railways?”). We recruit groups of human
participants to write out their opinions about these questions. We then fine-tune a 70 billion parameter
language model (Chinchilla [17]) to produce candidate consensus statements that small groups of
participants would be likely to endorse (see Table 1), guided by an underlying family of social welfare
functions. Critically, in our work, the language model is not trained to adopt a particular opinion or
persuade others of any one view. Rather, it is trained to produce consensus candidates based on the
opinions contributed by the human group. We find that our particular data collection and training
pipeline results in a model that generates statements that are preferred more strongly than a number
of high-performing baselines, including individual human opinions. The statements generated by
the model reflect the underlying opinions that are contributed by the users. This work opens up new
possibilities for LLMs to help people find common ground in service of collective decision making.

2 Related Work

Aligning LLMs with human preferences. Several papers have reported the successful training of
AI systems directly from human preferences (e.g., training deep RL agents to play Atari [12, 18]). In
the domain of language modelling, human preferences have been used to fine-tune models to perform
specific tasks, such as summarisation or translation [37, 30, 5], to provide inline citations supporting
their claims [25, 23, 32], or for generic instruction following [26]. Our pipeline shares several design
similarities with these works (e.g., the reward modelling approach). A key point of distinction,
however, stems from the source of legitimacy in which statements produced by the language model
are ostensibly grounded. For these related works, external sources that are generally agreed to be
truthful and unbiased are the source of legitimacy. In our work, by contrast, we optimise, through
a combination of opinion-conditional reward modelling and group-level welfare maximisation, to
produce statements that will generate agreement for a specific group.

Summarization. Our work builds upon attempts to build natural language processing models to
provide high-quality summaries of text (e.g., [10, 29]). These efforts have redoubled recently with
the advent of LLMs [37, 30, 27]. Like consensus opinions, good summaries should be concise,
informative and balanced passages of text. However, summaries and consensuses differ in their
grounding: good summaries are based on accurate, fact-based information about the world (for which
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Question Should we lower the speed limit on roads?

Opinion 1
participant

The higher speed limits are ok and need no change. Some of the lower limits, like 30mph in
built up areas, should be reduced and better enforced to reduce accidents. All in all the higher
limits would not have much impact if reduced.

Opinion 2
participant

Yes. Driving faster causes higher pollution and does not significantly shorten the average
length of journeys. It would increase the fuel efficiency of those driving and prevent the
distribution of microscopic particles of rubber from tyre wear into the environment. The
number of road fatalities would reduce too.

Opinion 3
participant

I think the speed limits are mainly fine the way they are. In our area speed limits are reduced
around busy areas such as schools and parks which is a good thing.

Consensus
SFT-Utilitarian

We believe that speed limits are currently appropriate. However, we feel that there is a need to
enforce speed limits more strictly, particularly in areas with a high density of pedestrians such
as near schools. We also feel that there is a need to educate people more about the effects of
driving too fast, such as the effects on fuel efficiency and pollution.

Table 1: A candidate consensus statement generated by our SFT-Utilitarian model in response to a
question and corresponding opinions from the test set. The example was chosen randomly from a set
of consensus statements that included 3 opinions and that was in response to a divisive question (i.e.,
questions for which there was some disagreement). Other examples can be found in the Tables A6-7.

a single viewpoint is typically accepted) whereas a consensus is grounded in the opinions of the
specific individuals in a group seeking to achieve agreement. Our work specifically builds on work in
opinion summarisation, in which subjective opinions (typically reviews about products, restaurants, or
movies) are summarized into a kind of meta-review (e.g., [1, 31]). While similar in spirit to our work
on consensus generation, extant work in opinion summarisation falls short of using actual human
feedback and does not verify generated summarisations with the same individuals who provided their
opinions, instead focusing on third-party evaluations (e.g., does this summary make sense in light of
these opinions?). By not engaging with the people that provided the original opinions, these projects
do not pertain to alignment problems but instead are closer to other summarisation work.

Collective Reasoning. Our work is relevant to a fast-growing interest in the use of technology,
including machine learning methods, to promote human collective reason, including democratic
deliberation [21, 13]. More traditional ML approaches (e.g., data/opinion mining) make use of
richly structured (e.g., graph-based) models to make sense of public discussions [36] and to facilitate
interactions in online communities [16]. We seek to leverage recent breakthroughs in large-scale
language modelling to facilitate public deliberation via consensus generation.

3 Methods

We created a large data set of debate questions and built a customized environment and pipeline that
allowed us to collect human opinions and fine-tune our models in an iterative loop (Figure 1).

3.1 Generating debate questions

We generate questions using a prompted, 70 billion parameter pre-trained LLM (Chinchilla [17]).
We seeded the process with 152 hand-written questions on issues of contemporary debate. Most were
policy questions of the form "Should we...?" or "Should the government...?" that are relevant for the
UK-based participants that took part in our human evaluation. We use these 152 seed questions to
artificially generate a total of 3500 debate questions. For each debate question, we prompt Chinchilla
with a sample of 10 seed questions. The model generates a new question, which, if unique, we add to
our total set. We manually check questions and filter out any that we consider likely to elicit extremist
views or discriminatory language from the users.

This results in 2922 questions which we use to create a training set and two test question sets by
clustering according to topic. We first embed each question using a Universal Sentence Encoder and
cluster the questions into 110 topics using k-means clustering [9]. There is, for example, a cluster of
25 questions that corresponds to questions on food taxes such as “Should there be a tax on junk food?”
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Figure 1: Overview of the data collection procedure. The evaluation pipeline proceeded in six steps.
(1) Human participants, sorted into small groups (n ∈ {3, 4, 5}), each wrote a short paragraph stating
their opinion about a political question (e.g., “should we lower the speed limit on roads?”). (2) These
opinions, together with the question, were passed to a prompted pre-trained LLM (or, a fine-tuned
LLM on later rounds) via the prompt, which generated consensus candidates. (3) Pairs of participant
opinions and candidate consensus statements were passed into a reward model, which estimated the
degree to which each participant would agree with a candidate consensus. (4) For each consensus
candidate, the set of predicted individual preferences were aggregated with a social welfare function.
(5) From a batch of consensus candidates, the one that maximised welfare was selected for human
evaluation. (6) Participants then rated this consensus candidate, together with candidates generated in
other batches or conditions, on a 7-point agreement scale. Quality ratings were used to filter the data
for later fine-tuning and agreement ratings for training the reward model and for evaluation.

and “Should we remove all tax on food and groceries?”. We then split the clusters into two groups,
and set some question-clusters aside for an out-of-distribution hold out set (n = 302). The remaining
questions were sorted into a training (n = 2320 questions) and a within-distribution hold out set (n =
300). See Appendix A for more information on question generation, filtering and clustering.

3.2 Data collection and environment design

On each round, groups of UK-based participants (n = 3211 organized into 746 groups, combined
across training and eval) viewed a question, and wrote their opinion by typing freely into a text box in
our custom online application. The opinions of a group were put into a prompt that was provided to
one or more LLMs to generate candidate consensus statements. Data was collected using groups of
four or five participants, though candidate consensus statements were sometimes generated based on a
subset of participants’ opinions (Section 4.3). Consensus candidates were then presented individually
to participants in a random order, and each participant rated them along two dimensions, quality and
agreement, using 7-point Likert scales. Participants rated all candidate consensus statements twice, to
allow us to measure intra-rater reliability.

Additionally, before providing their own opinion or viewing candidate consensus statements, partic-
ipants provided an agreement rating on a ”position statement”, which is a version of the question
stated declaratively (e.g., “We should...”). This allowed us to measure baseline disagreement among
the group. Each training or evaluation session took between 45 minutes and an hour. As our explicit
goal is to train and evaluate on diverse opinions, we recruited a new set of participants for each data
collection session, rather than use the same participants repeatedly. The full details of our study
design, including compensation rates, were reviewed by our independent ethical review committee.
All participants provided informed consent prior to completing tasks and were reimbursed for their
time. It is our policy that researchers must pay workers/participants at least the living wage for their
location. For this study participants were paid an average compensation rate of £15 per hour (the total
cost of the study was approximately £46,000). No personally identifiable information was collected
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as part of this research, nor was any offensive content shown to participants. More detail on the
environmental design and the recruiting and training processes can be found in Appendix B.

3.3 Group alignment

In line with previous work [37, 30, 26], we use reward models to predict whether generated statements
will be preferred by participants. Given our focus on diverse preferences, we train a reward model
that predicts agreement conditional on a person’s own opinion. Given a group of people with
corresponding opinions, we can then use this model to generate, for each person, a score that predicts
how likely they are to agree with a given statement.

Having estimated each individual’s expected agreement, we aggregate these scores to predict the
extent to which a candidate consensus will be preferred by the group. For simplicity, we assume
that preferences are cardinal and comparable between participants, and we aggregate them using a
cardinal Social Welfare Function (SWF). SWFs are used in the field of welfare economics to map
a set of numeric individual utitilities to collective welfare [19]. The goal of the model is then to
generate a consensus that maximizes the group welfare given the set of opinions from the group. Any
SWF that satisfies six desirable axioms belongs to a one-parameter family of isoelastic social welfare
functions [24]

Wα(u1, . . . , un) =


[
1
n

∑n
i=1 u

1−α
i

] 1
1−α if α ≥ 0, α ̸= 1

n
√∏n

i=1 ui if α = 1

(1)

where ui is the utility of person i and α is the degree of inequality aversion. At one extreme, for α = 0,
the SWF corresponds to max-mean or Utilitarian, which computes the mean expected agreement
across the group. On the other extreme, for α = ∞, the SWF corresponds to max-min or Rawlsian,
which maximises the expected agreement for the most dissenting group member. Rawls argued in
favour of the welfare function that yields the most desirable condition for the worst-off member of the
group [28]. In the Results section we use a Utilitarian social welfare function for ease of interpretation
but we present results on Rawlsian and Bernoulli-Nash (max-product, α = 1), in Appendix D.5.

3.4 Training

Our training pipeline largely follows previous reports that use human feedback to fine-tune large
language models [37].2 Thus, we use a supervised fine-tuned LLM to generate N consensus
candidates (N = 16), which are then reranked by a reward model according to their expected
social welfare. We then select the statement that maximizes the welfare. We denote these models
SFT-@SWF where @SWF corresponds to welfare function.

The reranking approach gives us flexibility over the social welfare function during deployment.3 To
ensure that the model generalizes to different social welfare functions on the Utilitarian-Rawlsian axis,
we sample the inequality aversion parameter α during training time from a log-normal distribution.
During training, we start with the 70 billion parameter pretrained Chinchilla model and iterate twice
over the following training steps before evaluating our final models.

Step 1 - Generate consensus candidates and have them rated by humans Participants provide
written opinions in response to a question. The fine-tuned language model takes in the question and
these opinions as part of its prompt and generates a set of consensus candidates (on the first iteration,
we bootstrap first with zero-shot prompting and then with few-shot prompting of the base Chinchilla
model). To ensure that our dataset contains data on a variable number of opinions (between 3 and 5),
each time a statement was generated we silently omitted 0, 1, or 2 of the participants’ opinions. For
each unique number of opinions, we generate 16 candidates and select 2, each of which is ranked
top-1 under a different α. These 6 (3x2) highest ranked consensuses are then presented to participants
who rate them for quality and agreement using two 7-point Likert scales. Note that, on the first

2Supervised fine-tuning with demonstrations from expert human consensus-writers (with access to the
opinions) could be a viable alternative. However, previous work on summarisation has shown that learning from
demonstrations can result in the model prioritising the fine-tuning objective (maximising the likelihood of a
demonstration, including low-quality examples) over the true objective (in this work maximising welfare) [30].

3Recent work has shown that reranking can perform on-par or better than directly optimizing a model to
maximize human preferences using reinforcement learning [23, 32].
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iteration, we have no reward model for the reranking and selection scheme and thus simply generate 2
candidates for each unique set of opinions. Across all training data collection runs, 1524 participants
contributed to our training data. See Appendix B.1 for more details.

Step 2 - Supervised fine-tuning (SFT) to improve quality We fine-tune a pretrained Chinchilla
model on the consensus candidates that were rated as high quality (mean quality of 6 or higher on
a 7-point Likert scale). The purpose of SFT is to familiarize the model with the prompt template
and increase the candidate quality. We do not use agreement ratings to filter candidates as we aim to
retain diversity in the kinds of stances expressed in the candidates so we can then use reranking to
find the best candidate in terms of welfare4. SFT training details including the prompt template and
hyperparameters can be found in Appendix C.1.2.

Step 3 - Train a reward model (RM) to predict preferences We train an RM to take in a question,
opinion and a statement, and output a scalar "agreement" score. The score is a proxy for how likely
an individual is to agree with a statement given their own opinion. To provide data for model training,
each participant rates the six consensus candidates along a 7-point Likert score. Note that, as we
generate candidates based on 3, 4, and 5 opinions, participants also rate candidates that were generated
without taking their opinion into account. We map these six ratings to

(
6
2

)
pairwise comparisons,

remove the rating ties, and remove ratings from participants with low intra-rater reliability (see
Appendix B.2.1). The RM is then trained to predict which statement out of a pair each user will
prefer, conditional on the question and opinion, using standard cross-entropy loss. Note that the RM
only conditions on one opinion, while the SFT conditions on all opinions. We warm-start the RM
using a pretrained Chinchilla model and add an extra final linear layer to predict the reward. The
prompt template and further training details can be found in Appendix C.2. After training the reward
model, we go back to step 1.

4 Results

We ran two human evaluations, comparing our model against both high-quality baselines and human-
generated opinions. These evaluations used the same data collection platform and basic design (see
Section 3.2) and were run in separate sessions using the within-distribution questions and out-of-
distribution questions. We ran an additional evaluation experiment to assess the model’s sensitivity to
different social welfare functions, but this did not reveal any reliable differences in the average or
minimum agreement rating under any of the welfare functions of theoretical interest (we discuss this
null result further in Appendix D.5).

4.1 Preferences for consensus over baselines

We first test our main model against a set of high-quality baseline models. Our main model (SFT-
Utilitarian) generates statements using a 70 billion parameter language model fine-tuned on high
quality consensus statements. At inference time, we sample 16 statements based on the question
and opinions provided, and select the statement that maximizes predicted welfare under a Utilitarian
(max-mean) aggregation function. The baseline models are:

• SFT-Base. Our fine-tuned model but without the aggregation function selection process,
sampling only one statement at inference time.

• Few-shot. A few-shot prompted Chinchilla model. Each prompt contains three real
examples composed of consensus statements with three, four and five opinions. Each set of
examples is sampled from data collected using a zero-shot model, using a combination of
quality and agreement criterion (see Appendix C.1.1 for more details).

• Zero-shot A prompted Chinchilla model without examples.

Under each of the four model types, we generated two different candidates, all of which were
presented to the participants for rating. In these evaluations against baseline models we examine and
compare performance of the model under within-distribution questions (collected using groups of

4Our SFT approach is similar to RL via Expert Iteration [2], alternating between (1) policy improvement,
sampling from the current model and filtering these samples for quality, and (2) distillation, training a new model
using these filtered samples.
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Figure 2: Win rates for comparing models constructed by pairwise comparison of Likert agreement
ratings for candidate consensus statements (excluding ties) for within-distribution (blue) and out-of-
distribution (green) question sets. Likert agreement ratings are aggregated within groups by either the
mean (dark bars) or the minimum (light bars) agreement score. A: Win-rates for the SFT-Utilitarian
model in comparison to baselines. B: Win-rates for the SFT-Utilitarian model broken down by
whether or not the question was divisive in the group (see main text for details). Error-bars represent
95% bootstrapped confidence intervals.

five participants; total n = 530), and out-of-distribution questions (collected using groups of four
participants; total n = 267).

We found that the position statements on approximately 50% of rounds (questions addressed by
particular groups) were undivisive (receiving either all agreement or all disagreement from the group,
when examined in a binary fashion; see Appendix D.6); we perform a split of the dataset into divisive
and undivisive questions for further analysis. Notably, the fact that 50% of questions contained at
least one dissenting participant (out of a group of up to five people) indicates that our population of
participants do indeed have divergent opinions on many topics.

We first compare how likely a group is to prefer one policy over another. We do so using two metrics:
the mean agreement across the group (consistent with the Utilitarian training objective of the model)
and the minimum agreement in the group (consistent with a Rawlsian objective, not explicitly used in
the model).5 We compute these metrics for each statement and take the mean metric value across
the statements generated under the same policy. To compute the win-rate, we compare these mean
scores between two policies where the "winning" policy is the one with higher score. Under the
group-mean agreement score, participants significantly prefer our main SFT-Utilitarian model over
all of the baselines (Figure 2A), and strongly so in comparison to the two prompted LLMs. Even more
impressive, participants prefer the SFT-Utilitarian model over all baselines for the group-minimum
agreement score (a Rawlsian objective), indicating that our model is also more adept at increasing
agreement among the strongest dissenters. Furthermore, we see the human preference for our model’s
consensus statements is present for both more and less divisive questions (Figure 2B), highlighting
the model’s utility in helping people find agreement even where opinions are divided.

In addition to the main baseline model comparisons detailed here, we also compared our main model
against a smaller 1.4B parameter model (n = 224). We found that training a smaller model with
data generated from the larger model can be effective, as the SFT-Utilitarian-1.4B outperforms the
larger prompted models. However, the larger SFT-Utilitarian-70B is still superior, indicating that
fine-tuning and size are both additive in this task. See Appendix D.1 for full details.

5We additionally analyze the group agreement scores in terms of the median, which is more appropriate for
an ordinal (Likert) scale, and is more robust to outliers in small samples, as we have here in our groups. Usage
of the median results in the same substantive conclusions for the primary analyses and for clarity we report these
results in Appendix D.3.
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Figure 3: Distributions over Likert ratings for candidate consensus statements generated by the
SFT-Utilitarian model and baseline models. A: Agreement ratings. B: Quality ratings. Error-bars
represent 95% bootstrapped confidence intervals. See Figure A11 for agreement scores broken down
by question divisiveness.

To further assess the reliability of the human preference for our SFT-Utilitarian model’s consensus
generations over those of the ablated models, we constructed a maximal mixed-effects logistic gener-
alized linear regression model [22], the standard in confirmatory hypothesis testing [6]. Consistent
with our win-rate analysis, we found that participants agreed more strongly with the consensus
candidates generated by the SFT-Utilitarian model than those generated by the SFT-Base (β = 0.12;
SE = 0.047; z = 2.53; p = 0.011; Figure 3A). Under this analysis, participants also preferred the
SFT-Base’s generations more so than those of the few-shot model (β = 0.40; SE = 0.055; z = 7.35;
p < 0.001), but exhibited no preference for the few-shot model over the zero-shot model (β = 0.05;
SE = 0.06; z = 0.88; p = 0.34). We observe that the quality of the model-generated statements
also increases as a function of our training pipeline, with both supervised fine-tuning and reward
modelling impacting participants’ quality ratings (Figure 3B).

To assess the performance of the SFT-Utilitarian model in more absolute terms, we examined the
data for the approximately 50% of rounds in which participants were on different sides of a position
statement (i.e., the divisive rounds). We found that, on these divisive rounds, 65.6% [61.9, 69.3]
of candidates generated by the SFT-Utilitarian model were less divisive than the initial position
statements. Furthermore, on 40.8% [35.4, 46.2] of rounds with a divisive position statement, a
candidate consensus statement from the SFT-Utilitarian model achieved unanimous support (i.e., all
participants somewhat agreed with the statement; see Appendix D.7 for full results and details). These
results demonstrate not only that human participants preferred the consensus candidates generated
by the SFT-Utilitarian model over those of the ablated models, but that the SFT-Utilitarian is
demonstrably effective at helping a group of people with diverse preferences find points of agreement.

4.2 Preferences for model candidates over human opinions

Here we compare the performance of our SFT-Utilitarian model against human-generated opinions.
While the human opinions are not explicitly written with consensus in mind, the opinions are very
high-quality, frequently containing well-reasoned justifications for their positions (see Tables A6-7
for examples). Data was collected using groups of four participants (n = 189 for within-distribution
questions, n = 186 for out-of-distribution questions). As with our previous evaluations, each
participant wrote an opinion in response to the question, and these opinions were used to generate
three candidates with our SFT-Utilitarian model. The same participants were then shown these
model-generated consensus candidates alongside the (anonymous) opinions of the other participants
in their group. All participants rated both the consensus candidates and the opinions.

We perform two analyses: for each participant, we compare their mean agreement over the set of other
participants’ opinions to their mean agreement over the set of model candidates; we also compare their
most preferred other opinion to their most preferred candidate. We then compute the win rates over
all participants and questions for each of these two metrics separately. The mean candidate score is
preferred over the mean opinion score 78% (95%-bootstrapped CI: [75%, 80%]) of the time. Perhaps
more impressively given the potential variance across the different opinions, even when we select
the best-rated opinion, we find that our best-rated model candidate is still preferred 65%[61%, 69%]
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of the time. Finally, we find that this difference in preference is larger for more divisive questions
(win-rate of 66%[61%, 71%]) than for less divisive questions (win-rate of 63%[57%, 69%]).

4.3 Opinion exclusion analysis

Our model’s ability to generate statements that provoke higher agreement could be achieved by
generating statements that are more likely to be preferred in general but not tailored to the specific
set of opinions of the small group. In order to assess this potential failure mode, we make use of the
fact that our main evaluation dataset contains candidates that are based on subsets of opinions (3 or 4)
from the full set of five provided by the participant group. If the model is making use of the specific
opinions passed into it, then the agreement rates from participants whose opinions are excluded
from the candidate generation process should be lower than those whose opinions are included. For
each candidate in our evaluation set where fewer than 5 opinions were included, we compute the
difference in median agreement between the inclusion group and the exclusion group. This analysis
reveals an average inclusion/exclusion Likert agreement difference of 0.47 (CI = [0.21, 0.73]) for
our SFT-Utilitarian model. Quality ratings, by contrast, are not impacted by opinion exclusion
(Mean= 0.10, CI= [−0.05, 0.25]), and the difference between quality and agreement scores under
this exclusion analysis is statistically significant (t = 2.94, p = 0.0036). This dissociation supports
the conclusion that our model is successfully producing consensus candidates based on the specific
set of opinions provided by the users, rather than producing generically preferred statements.

4.4 Out-of-distribution generalisation

So far, our evaluations are based on a question set that was unseen during training but that came from
the same topic clusters of questions that were used during training. Next, we run separate human
baseline experiments using the out-of-distribution question dataset, which has been specifically
created so that the questions came from topic-space clusters that were never seen by our models
during training. Despite the topic novelty, we find that that the SFT-Utilitarian model’s statements are
preferred over all baselines to a degree that is numerically similar to that for the within-distribution
questions (Figure 2). SFT-Utilitarian model also continues to outperform the human opinions
in the out-of-distribution question set at similar rates to the within-distribution question (mean
candidate vs. mean human opinion: 76% [74%, 79%]; max candidate vs. max human opinion: 59.5%
[56%, 63%]). Overall, this additional set of evaluations demonstrates the capability of our model to
generalize beyond its training distribution without apparent loss of performance.

5 Discussion

We fine-tune an LLM to take in a question and the written opinions of a human group, and generate a
statement that maximises the agreement of that group. This work opens up new avenues for language
modelling in which the goal is to accommodate a set of diverse preferences.

5.1 Limitations

What makes a good consensus? Consensus statements generated by our model are rated more highly
than those produced under rival methods, including one baseline (SFT-Base) that mimics our approach
in every respect, omitting only the reranking step. Moreover, the model is sensitive to the specific
opinions provided in the prompt, because auxiliary analyses show that excluded participants offer
lower agreement but similar quality ratings. However, we do not know exactly why the statements are
preferred. In particular, SFT-Utilitarian also receives a higher number of “excellent quality” ratings
(see Figure 3B) raising the possibility that its statements (whist tailored to the group) are also more
generally sensible or well-written. Alternatively, people may use "quality" as a proxy for agreement,
raising the additional risk that more confident or authoritative users will wield more influence over
the consensus, potentially exacerbating power imbalances between different social groups.

Social Welfare Functions. We train the model under a distribution of SWFs. In the Results section
we show that reranking statements using a Utilitarian aggregation function generates consensus
statements that already take into account both minority and majority views (improving both the
min and mean rating over baselines). Hence, when we compare the Utilitarian SWF to other
more equitable welfare functions like Rawlsian and Bernoulli-Nash, we do not observe meaningful
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differences in the mean ratings across participants or that of the most dissenting (min) participant.
We thus cannot conclude based on these results alone that aggregating using different SWFs actually
results in different behavior. We report these results in Appendix D.5.

Data collection We collect human data from a crowd-sourcing platform. Because the debate questions
are relevant to UK current affairs, we limit inclusion to UK participants. However, this curtails the
diversity in our participant cohort, and limits the generalisability of our findings. It also raises the risk
that consensus statements may unduly reflect the views or biases of the participant demographic that
we have sampled, in addition to any biases that may arise during pretraining [34, 7]. We note that
the benefits of our model are most pronounced at the upper end of the Likert scale, perhaps because
homogeneity in our sample inflates baseline levels of agreement. We are developing additional
recruitment methods to allow us to sample a more diverse group of people for future experiments.

Scale We limit data collection to small groups of four or five people. This choice is in part because of
the technical limitation imposed by the prompt length of the model, which can handle only a handful
of written opinions. There may, however, be important future use cases where aggregating over many
thousands of opinions is necessary, requiring an architecture that is scale invariant. One approach
that could be fruitful is to map each opinion to an embedding and then aggregate those embeddings
directly. Related examples include the attention-based architecture in [33] or the recursive approach
developed for summarizing books in [35].

5.2 Broader Impacts

Misuse for persuasion We did not train the language model to adopt a particular position or persuade
others of a specific political view. Nevertheless, there is a risk that LLMs can be used for human
persuasion, posing a risk in political discourse, the media, or in advertising. Political debate is already
increasingly polarised, especially in Western societies. A system that is capable of persuading others
to adopt a particular viewpoint could learn to present arguments in a manipulative or coercive manner,
and mitigations for these potential harms play an important part in any research addressing this topic.

Factuality The language model we describe is not specifically fine-tuned to produce consensus
opinions that are factually accurate. Thus, whilst manual review of consensus statements suggested
that they were broadly accurate, there exists a risk that the consensus opinions that it produces could
be misleading or contain false information.

Misrepresentation of consensus Our work describes an AI that helps people find agreement in
natural language. However, the consensus statement might not reflect the views of all the users. This
raises important questions about how such a consensus is used. For example, a consensus might be
presented as reflecting a unanimous view, misrepresenting the minority opinion, or use the consensus
statement to justify otherwise unwarranted courses of action. It is important that users understand
these caveats when interpreting the consensus.

Opportunities Nevertheless, despite these acknowledged risks, our research was conducted with
societal benefit firmly in mind. The ultimate goal of our work is to provide a tool that can be used
safely to help people find agreement. We focus on opinions about debate questions, but we can
envisage a wider set of use cases, such as aggregation of online reviews into more helpful meta-
reviews, systems for collective writing that automatically takes the preferences of different authors
into account, and systems for collective decision making for organised groups. However, we note that
considerable work is needed to understand the potential risks associated with AI consensus generation,
and to find ways to ensure that model outputs are generated in a transparent and explainable way,
before any such system can be deployed.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5.1.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.2.
(d) Have you read the ethics review guidelines and ensured that your paper conforms

to them? [Yes] Regarding the collection of human data, our study was reviewed by
our internal research ethics committee. This review includes ensuring compliance
with GDPR, no collection of personal identifiable information, filtering of potentially
offensive content, and receiving explicit consent from participants. Regarding matters
related to potential negative societal impacts and general ethical conduct, we discuss
these in detail in Sections 5.1 and 5.2.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [No] We are not
releasing the code or data. However we do describe both our question generation pro-
cess as well as all the training details for supervised fine-tuning and reward modelling.
Additionally, we provide example questions, opinions, and consensus candidates in the
Appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Yes, see the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Yes, the error bars represent 95% bootstrapped confidence
intervals.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We trained our models using
Tensor Processing Units (TPUv3). The supervised fine-tuning models were fine-tuned
using 64 TPU cores for 200 steps. The reward models were trained using 32 TPU cores
for 1500 steps. We discuss our training process and hyperparameters in more detail in
the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] In our work we
fine-tune a 70 billion pretrained language model [17] which we cite in the Methods
section.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Yes, see Section 3.2.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Yes, see Section 3.2.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] Yes, these are provided in the Appendix.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [Yes] This work was reviewed by our institution’s
research ethics committee, see Section 3.2.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] Yes, see Section 3.2. Participants were paid
£15 per hour. The total cost for human data collection was approximately £46,000.
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